Caviaga, 15 maggio 1951: fu davvero un terremoto indotto?

0

Caviaga, 15 maggio 1951: fu davvero un terremoto indotto?

“[Cremona] […] Moltissime case, specialmente quelle di vecchia costruzione, hanno subito lesioni più o meno gravi. Non si contano i comignoli crollati: ieri mattina all’alba non vi era strada ove non vi fossero qua e là macerie di fumaioli abbattuti o di pezzi di cornicione crollati. In mattinata, i vigili del fuoco hanno ricevuto numerose chiamate per demolire comignoli così gravemente lesionati da minacciare rovina. Anche ingegneri e capomastri hanno ricevuto inviti a centinaia per constatare se le lesioni apparse nei muri di tante case potessero o meno costituire un pericolo per la solidità dell’edificio” [La Provincia [Cremona], 1951.05.17, p. 2]”

Fig. 1 – Titoli di corrispondenze giornalistiche nel quotidiano locale cremonese “La Provincia” del 16 maggio 1951 e dell’edizione nazionale dell’Unità del 16 maggio.

Titoli di corrispondenze giornalistiche nel quotidiano locale cremonese “La Provincia” del 16 maggio 1951 e dell’edizione nazionale dell’Unità del 16 maggio.

L’ampia area di avvertimento del terremoto e il suo carattere inusuale in area lombarda e padana produssero una immediata attenzione di quotidiani e settimanali, come attestato da alcuni titoli molto enfatici, pur se l’attenzione prestata a questo evento durò relativamente poco per la scarsa consistenza degli effetti materiali.

Fra i testi di un certo interesse culturale, vale la pena segnalare una lunga e sensatissima intervista al prof. Orlando Vecchia, docente di geologia presso il Politecnico di Milano, pubblicata dal settimanale “Oggi”.

Fig. 2 – Frontespizio del settimanale “Oggi” del 24 maggio 1951 con il richiamo all’articolo sui terremoti della Pianura Padana.

Frontespizio del settimanale “Oggi” del 24 maggio 1951 con il richiamo all’articolo sui terremoti della Pianura Padana.

Alcune considerazioni del prof. Vecchia sono di estrema attualità: la rarità ma non eccezionalità dell’evento, la non prevedibilità dei terremoti, la demolizione sistematica delle convinzioni ingenue presenti nel senso comune (terremoti che avvengono “quasi sempre di notte”, correlati ad eventi meteorologici o astronomici, gli animali che manifestano “segni premonitori”), oltre ad una considerazione molto acuta sulla profondità elevata di queste scosse.

Figura 3 – Il titolo dell’intervista al prof. Orlando Vecchia pubblicata dal settimanale “Oggi” del 24 maggio 1951.

Titolo dell’intervista al prof. Orlando Vecchia pubblicata dal settimanale “Oggi” del 24 maggio 1951.

Questi eventi vengono oggi ricordati con particolare interesse perché all’epoca la loro origine venne correlata alle attività di estrazione di gas naturale in corso nell’area.

Caloi et al. (1956) determinarono l’ipocentro ad una profondità di 5 km (figura 4) suggerendo l’ipotesi, ribadita anche successivamente (Caloi, 1970), di un’origine legata all’attività estrattiva iniziata nell’area epicentrale a partire dal 1944 (AGIP Mineraria, 1959a).

Sulla base di tale ipotesi e in assenza di successive discussioni o revisioni, questi terremoti sono entrati a far parte, acriticamente, delle liste degli eventi indotti o innescati dall’attività antropica compilate da vari autori, sia a scala nazionale (ISPRA, 2014; Styles, et al., 2014) che internazionale (Grasso, 1992; Guha, 2000; Klose, 2013; Maury, et al., 1992; Suckale, 2009). È importante notare che se tale ipotesi venisse confermata, il primo dei due eventi rappresenterebbe il più forte terremoto innescato in Europa e uno dei più forti al mondo.

La discussione formulata da Caloi et al. (1956) era necessariamente basata sulle conoscenze sismologiche e geologiche del tempo. Le informazioni sulla storia sismica dell’area erano limitate a quanto raccolto dalla compilazione sismologica di Baratta (1901) dove, nella sezione denominata “Distribuzione topografica dei terremoti italiani”, si legge che “nella cartina sulla sismicità dell’Italia settentrionale […] Lodi e il Lodigiano non figurano in nessuna area sismica […]”, ripreso da Caloi et al. (1956).

La conoscenza dell’assetto sismotettonico della Pianura Padana, nonché della velocità di propagazione delle onde sismiche, era generica e la capacità di registrare eventi di bassa magnitudo era esigua a causa delle limitazioni tecniche e della scarsità di stazioni sul territorio.

Partendo da quello stato delle conoscenze, Caloi et al. (1956) poterono affermare che “la zona che ci interessa […] è stata sempre considerata asismica; e comunque non ci risulta che, geologicamente, sia da considerarsi in fase di sollevamento (p.93)”, che “in corrispondenza della Val Padana, la crosta terrestre consiste quindi di tre strati sovrapposti […]. Sopra lo strato del granito, si trova una stratificazione di sedimenti, generalmente diffusa in tutta Europa (p.103)” e concludere che “per quanto riguarda la natura della scossa […] la singolarità del meccanismo […] il fatto che la zona interessata è notoriamente asismica e che in essa, da parecchi anni, è in corso un abbondante estrazione di gas metano, ha fatto ritenere non del tutto improbabile che le scosse in esame siano comunque collegate all’enorme decompressione in atto negli strati profondi […] (p.104)”.

Dopo 60 anni, notevoli passi in avanti sono stati fatti nel campo della sismologia, in particolare nelle tecniche di localizzazione ipocentrale, così come nella conoscenza della storia sismica italiana, del suo assetto sismotettonico e della struttura crostale regionale (figura 4). È quindi possibile oggi analizzare i dati relativi a questi eventi alla luce delle nuove conoscenze acquisite.

Dal punto di vista tettonico, l’area epicentrale di Caviaga ricade in una zona particolarmente interessante, dove il fronte di compressione, legato all’evoluzione e al sollevamento dell’Appennino settentrionale, incontra il fronte di compressione più esterno e meridionale legato all’evoluzione della catena alpina (figura 4). Misure GPS (Global Position System) dei tassi di deformazione di quest’area evidenziano un movimento verso nord, rispetto al continente Euroasiatico, di 0.5–1 mm/anno (Serpelloni, et al., 2005).

Figura 4: Sismicità strumentale degli ultimi 30 anni rappresentata con stelline di colore variabile con la profondità (vedi tabella 1). In nero sono tracciati i lineamenti tettonici attivi al contatto tra fronte alpino e appenninico. Il cerchio rosso rappresenta la localizzazione epicentrale del terremoto più forte (mainshock) del 15.05.1951 tratta da Caloi et al. (1956).

Figura 4: Sismicità strumentale degli ultimi 30 anni rappresentata con stelline di colore variabile con la profondità (vedi tabella 1). In nero sono tracciati i lineamenti tettonici attivi al contatto tra fronte alpino e appenninico. Il cerchio rosso rappresenta la localizzazione epicentrale del terremoto più forte (mainshock) del 15.05.1951 tratta da Caloi et al. (1956).

La consultazione dei bollettini (ISIDe Working Group, 2010) relativi alla sismicità registrata negli ultimi 30 anni in un raggio di 20 km intorno a Lodi, mostra almeno 21 eventi con una profondità ipocentrale maggiore di 10 km (figura 4 e tabella 1).

Quanto alle conoscenze sulla storia sismica dell’area, esse sono oggi più avanzate rispetto a quelle sintetizzate dal Baratta (1901). La mappa dei terremoti storici (figura 5; Rovida et al., 2011) evidenzia che l’area interessata dai terremoti del 1951 non può essere considerata storicamente asismica. In particolare, l’evento del 1786 risulta avere una localizzazione molto prossima a quella calcolata per l’evento del 1951. I dati disponibili evidenziano un’area di effetti molto vasta che suggerisce un ipocentro profondo, come nel caso di altri eventi accaduti in passato in altre località nella Pianura Padana (1796, 1909 e 1983, Vannoli et al., 2014).

Può dunque essere considerata vera l’ipotesi suggerita da Caloi et al. (1956) che i terremoti del 15 e 16 maggio 1951 siano stati indotti o innescati dall’attività estrattiva del giacimento metanifero di Caviaga o del vicino giacimento di Ripalta?

Alcuni ricercatori dell’INGV hanno cercato di rispondere a questa domanda e le loro conclusioni sono state pubblicate nella rivista internazionale Seismological Research Letters (Caciagli, et al., 2015). Nel 1951 nell’area epicentrale colpita dagli eventi erano presenti due campi di estrazione metanifera: il giacimento di Caviaga e il giacimento di Ripalta. Alla fine del 1951, dal giacimento di Caviaga erano stati estratti 701 milioni di metri cubi (mc) di metano, 1824 mc di gasolina naturale e 1676 mc di acqua (AGIP Mineraria, 1959a).

Il giacimento del campo di estrazione di Caviaga è superficiale: il gas è estratto a profondità di 1300-1700 m da depositi prevalentemente sabbiosi del Pliocene con spessori massimi dell’ordine di 200 metri. Dal vicino giacimento di Ripalta, 10 km a nord-est di Caviaga, alla fine del 1951 erano stati estratti 312 milioni di mc di metano, 38 mc di gasolina naturale e 47 mc di acqua (AGIP Mineraria, 1959b). In nessuno di questi campi di estrazione furono mai usati pozzi per l’iniezione di fluidi di lavorazione nel sottosuolo.

Caciagli et al. (2015) hanno ricalcolato la localizzazione ipocentrale degli eventi utilizzando algoritmi e modelli di velocità di propagazione moderni, partendo dalle registrazioni dei tempi di arrivo pubblicate sul Bollettino del maggio 1951 dell’International Seismological Summary (ISC, 2011; ISS, 1951).

Figura 5: Le stelle piccole rappresentano la sismicità strumentale degli ultimi 30 anni con colori variabili secondo la profondità. I rombi gialli rappresentano i pozzi estrattivi dei campi di Caviaga e Ripalta, attivi all’epoca degli eventi. I quadrati rossi indicano la sismicità storica (CPTI11). Le stelle grandi fucsia, celeste e blu rappresentano rispettivamente le localizzazioni dei terremoti del 15 maggio 1951 di Caloi et al (1956) e del 15 e 16 maggio 1951 secondo Caciagli et al (2015).

Figura 5: Le stelle piccole rappresentano la sismicità strumentale degli ultimi 30 anni con colori variabili secondo la profondità. I rombi gialli rappresentano i pozzi estrattivi dei campi di Caviaga e Ripalta, attivi all’epoca degli eventi. I quadrati rossi indicano la sismicità storica (CPTI11). Le stelle grandi fucsia, celeste e blu rappresentano rispettivamente le localizzazioni dei terremoti del 15 maggio 1951 di Caloi et al (1956) e del 15 e 16 maggio 1951 secondo Caciagli et al (2015).

Gli epicentri ottenuti (figura 5 e tabella 2) spostano la localizzazione dei due eventi a nord di Lodi, ad una distanza di circa 20 km da entrambi i giacimenti di Caviaga e Ripalta. Gli ipocentri inoltre risultano essere ad una profondità compresa tra i 34 km e i 32 km per l’evento principale (mainshock) del 15 maggio e ad una profondità compresa tra i 20 km e i 13 km per quello del 16 maggio.

Per rispondere alla domanda legata all’eventuale natura antropica di questi eventi, Caciagli et al. (2015) hanno inoltre effettuato il calcolo della variazione di stress indotta dall’attività estrattiva effettuata fino al 1951 nei rispettivi giacimenti.

Tabella 2 – Parametri ipocentrali dei terremoti del 15 e 16 maggio 1951 ricalcolati usando i programmi di localizzazione Hypoinverse e Hyposat. (da Caciagli et al. 2015 modificata).

Tabella 2 – Parametri ipocentrali dei terremoti del 15 e 16 maggio 1951 ricalcolati usando i programmi di localizzazione Hypoinverse e Hyposat. (da Caciagli et al. 2015 modificata).

Infatti, una fonte di potenziale cambiamento dello stress è lo squilibrio causato dalla rimozione della massa di metano estratta dal giacimento. È possibile calcolare la variazione di stress derivante dallo sfruttamento del campo di Caviaga considerando il volume (V) di gas estratto fino al 1951 (V ~ 700 Mmc, densità del metano 0,701 kg/mc; Dami, 1952; AGIP Mineraria, 1959a). Il volume totale di acqua e benzina estratto è così basso da risultare ininfluente in termini di massa.

La rimozione della massa di metano corrisponde ad una variazione di sforzo di ~1,7 Pa all’ipocentro. La stessa stima, ripetuta per il volume di gas estratto al giacimento Ripalta, dà una variazione di ~0,75 Pa all’ipocentro. Anche considerando un effetto cumulativo dei cambiamenti di stress a causa dello sfruttamento dei due giacimenti, si ottiene un valore ben al di sotto della soglia di 10 kPa che è generalmente considerata necessaria per l’attivazione di sismicità (Stein, 1999; Stein and Lisowski, 1983).

Altre fonti di perturbazione dello stress includono variazioni nella pressione di poro e negli effetti poro-elastici. Tuttavia diversi strati altamente impermeabili nella sequenza stratigrafica definiscono le trappole strutturali in cui sono confinati i serbatoi. Inoltre la parte di crosta in esame è caratterizzata da eterogeneità estreme ed importanti discontinuità verticali e orizzontali al contatto tra due domini tettonici (figura 4). Di conseguenza, l’ipotesi di una continuità idraulica eventualmente responsabile della propagazione fino a 35 km di effetti poro-elastici negli strati della crosta, risulta piuttosto improbabile.

In conclusione, alla luce delle nuove conoscenze, le argomentazioni di Caloi et al. a sostegno di un’origine indotta o innescata non sembrano verificate e non soddisfano i criteri stabiliti dalla letteratura internazionale (Davis and Frohlich, 1993) per discriminare la sismicità indotta/innescata dalla sismicità naturale.

In effetti, il territorio colpito dai terremoti del 15 e 16 maggio 1951 non risulta asismico poiché già interessato in passato da attività sismica, l’area è coinvolta nei processi geologici relativi all’evoluzione dell’arco appenninico settentrionale e di quello alpino meridionale, la nuova localizzazione degli eventi risulta spostata verso nord di oltre 20 km, gli ipocentri sono profondi circa 35 km, l’attività sismica recente riporta almeno 21 eventi con caratteristiche ipocentrali comparabili (profondità >10 km) in un raggio di 20 km intorno a Lodi.

Poiché le condizioni per le quali questi terremoti erano stati inseriti nelle liste internazionali degli eventi indotti sono venute a cadere, gli autori sono propensi a sostenerne un’origine naturale.

a cura di Marco Caciagli, Romano Camassi, Stefania Danesi, Silvia Pondrelli e Simone Salimbeni, INGV – Bologna.

 

Share.

Leave A Reply